ECE 313: Electromagnetic Waves

Lecture 5: Continue Maxwell’s equations

Lecturer :Dr. Gehan Sami



* The electric flux passing through any
closed surface is equal to the total charge
enclosed by that surface.

jg Dg.ds=Q, Q = fv Py, AV
* Applying divergence theorem:

¢ Ds.ds=] V.Ddv=[ p,dv

V.D=p,
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¢ Ds.ds = [Dy(x + Ax,y,z)AyAz— Dy (x,y,z) AyAz] +
[Dy(x,y + Ay, z)AxAz— D, (x,y,z) AxAz] +
[Dz(x: Y,z + AZ)AxAy_ Dz(x: Y, Z) AXAY] — pv(x,y,z)AxA
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as in Fig.: The number of electric field lines entering the ¢
surface equals the number leaving the surface. Therefore, the net electric flux through a closed
surface that surrounds no charge is zero.



AW = flux crossing AS = Dg - AS

The rotal flux passing through the closed surface 1s obtained by adding the
differential contributions crossing each surface element AS,

closed
surface

lIJ:‘d‘«IJ:a D¢ - dS

Giving a 60 uC point charge located at the origin, find the total electric flux passing through that portion
of the sphere r=26 cm bounded by 0<6<1/2 and 0< ¢ < 1t/2
Ans: 60/8=7.5 uC
over all closed surface
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$D.ds = D*4ar* =60u — D =

over specified surface
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Divergence theorem JV-EdV §§d_
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Differential form Integral form

V.B =0 B.ds =0

The magnetic field lines are closed

The magnetic field lines have neither source

(start point) or sink (end point)

It is not possible to have an isolated magnetic poles
(or magnetic charges)

Magnetic field is not a flow source, but a solenoidal
source




Differential form

Integral form

_ _ d _
VXE = —Z—f f E.dl = T B.ds Faraday’s law of induction
C S
. _ 3D _ _—  d _
VXH=]+— Hdl=| J.ds+— | D.ds Ampere’s law
ot C S dt S
V.D=p 565 D dszfv py AV Gauss flux theorem
V.B=0 §E_3 =0 Magnetic flux conservation
dp, d
V-J_c T §_c ds = —EIPVdV Continuity equation




- it is the vector field that can be
expressed as gradient of other scalar. Line integral of conservative
field is path independent. curl of conservative field=0 (as curl grad=0)

In electrostatic:

- E is a conservative field asE =—VV.ad[Edl goes not depend on path (it depend on
start and end points of integrals), thus closed contour integral (end point same as
start point) for conservative field=0. $Edi=0

C

*V is called potential function of E B :

— (-3,0,-2)
Example: for conservative field A4() :V(x2 + )-‘2)2 find fz'ﬂf")xﬂ M/\

A (3;'114)

g = ('(3)3 + (-1’ )—1 =40 g = ((_3)2 +(0)? )(_2 )——18 Gradlent theorem

q
[Vso(r) +dr = ¢ (q) — ¢ (p)
p

jﬁ(r).ﬁ - jvg(F)ﬁ —_18—40=-58
C C

vf =df /dl 4, —
[vidla, =df = f2-f1



Curl grad=0
Div curl=0

* Every field can be expressed as the curl of some other
vector field.(The curl of any vector field always results in a solenoidal field)

* only solenoidal vector B have zero divergence. ve-0 Solenoidal field =
divergenceless.

* the surface integral of any and every solenoidal vector field across a closed
surface is equal to zero (since divergence theorem IV Bdv = §Bds_o )

* |[n points:

Every solenoidal field can be expressed as the curl of some other vector field.

The curl of any and all vector fields always results in a solenoidal vector field.

The surface integral of a solenoidal field across any closed surface is equal to zero.
The divergence of every solenoidal vector field is equal to zero.

oA WN R

The divergence of a vector field is zero only if it is solenoidal



Electric ;/l ‘ ~ \ \

field lines

Electric field is conservative Electric field produced by changing

Vector field In magnetic field
Is solenoid vector field
If curl of a field is zero it is conservative vector field If div of a field is zero it is solenoidal vector field
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Types of vector fields - _ OXA%0 o X £0
Uniform solenoidal

field (rotational) Irrotational ngeral

field (conservative) field

field



As B is solenoidal vector, a vector magnetic potential A can be defined from B

VB=0 > B=VxA

From faraday’s law

VXE:—@:—Q(VXK) —> VX(E-I-%):O
ot ot ot
E+92_ v E=-22_vv. instaticZ =0and E =-vV
ot ot ot
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Az R Are R



* Non homogeneous wave equation for vector potential A
'VxH = (EVXVXK) :6—D+j
u ot
VxVxA= ,uga@—lf + 1]

— 0 OA _
VxVxA=us—_(-VV ——)+
7 &( at) 7

" ~ Vv A - . . .
V(V.A)-V?°A = —V(,ug%) — uE (Zt —+ 1) vector defined by its curl and its divergence
~ oV
o
LY o o
VA — UE - — M] wave equation, its solution represent waves travelling with velocity= 1/ \/E

ot?
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Non homogeneous wave equation for scalar potential V:

E:—VV—@—A, VD =p
ot

V.e(-VV —%—?) =p - -V¥V —%(V.K) =ple

— oV 0°V
V.A=- E > VZV — UE = — /g wave equation
" i

VAV +kV =—ple




TIME-HARMONIC ELECTROMAGNETICS

E(x, y, z, t) = Re[E(x, y, z)e/"],

V2V 4+ K2V = £

1 ¢~ R
V(R) =5 — J'V,p ——dv (V)
Je'-ij
A(R) = :; , —=—dv  (Wbjm)

The formal procedure for determining the electric and magnetic fields due to
time-harmonic charge and current distributions is as follows:

1. Find phasors V(R) and A(R) from Egs. (7-99) and (7-100).
2. Find phasors E(R) = —-VV — jwA and B(R) =V x A,
3. Find instantaneous E(R, t) = #E(R)e’*] and B(R, 1) = Z] B(R)e*"] for a co-

sine reference.

The degree of difficulty of a problem depends on how difficult it is to perform the

infegrations in Step 1.



In a region where tp = €g = 1 and 0 = 0, the retarded potentials are given by V = x(z — ¢f) V and

A = x[(z/c) — t]a, Wb/m, where ¢ = 1/ /11p€0.
a) Show that V- A = —ue(dV /0t):

First.

Second.

b) Find B. H. E. and D:

Near field:

Propagation does not appear
through A and V it appears

In Eand H it is along z

E along x

B along y

E not as same direction of A since it
depend on both grad V and A

-in far field E will depend on A only)

Use ”
Oy Z
Then
B | Z
H=—=— (r — —) a, A/m
Ho Ho C |
Now.
JdA B
E=-VV — ?—r = —(z —ct)ay —xa; +xa, = (¢ — 2)a, V/m
C
Then

D = ¢E = ¢p(ct — 7)ay C/m2
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